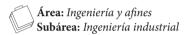
OPTIMIZACIÓN PARA INGENIERÍA FINANCIERA

CON APLICACIONES EN RY EXCEL

ALFREDO TRESPALACIOS

Trespalacios Carrasquilla, Alfredo

Optimización para ingeniería financiera con aplicaciones en R y Excel / Alfredo Trespalacios. -- 1a. ed. -- Bogotá : Ecoe Ediciones, 2021.


205 p. -- (Ingeniería y afines. Ingeniería industrial)

Incluye datos del autor. -- Contiene bibliografía.

ISBN 978-958-503-054-1 -- 978-958-503-055-8 (e-book)

- 1. Optimización matemática Programas para computador
- 2. Administración financiera Programas para computador
- 3. R (Lenguaje de programación de computadores) 4. Excel (Programa para computador) I. Título II. Serie

CDD: 519.6 ed. 23 CO-BoBN- a1070581

© Alfredo Trespalacios

► Ecoe Ediciones Limitada info@ecoeediciones.com www.ecoeediciones.com Carrera 19 # 63C 32, Tel.: 919 80 02 Bogotá, Colombia Primera edición: Bogotá, marzo del 2021

ISBN: 978-958-503-054-1 e-ISBN: 978-958-503-055-8

Directora editorial: Claudia Garay Castro Corrección de estilo: Karen Guiza Copy: Gisela Arroyo Andrade Diagramación: Olga L. Pedraza Rodriguez

Carátula: Wilson Marulanda Impresión: Carvajal Soluciones de

comunicación S.A.S Carrera 69 #15 -24

Prohibida la reproducción total o parcial por cualquier medio sin la autorización escrita del titular de los derechos patrimoniales.

Impreso y hecho en Colombia - Todos los derechos reservados

CONTENIDO

INTRODUCCION	XIX
Capítulo 1: problema de optimización	
Capítulo 2: formulación de problemas	3
Ejercicios resueltos para formulación de problemas	6
Capítulo 3: solución gráfica de problemas	15
Ejercicios resueltos para método gráfico	17
Capítulo 4: optimización sin restricciones	25
Condiciones de primer orden	25
Condiciones de segundo orden	27
Ejercicios resueltos condiciones de primer y segundo orden	31
Condiciones de optimalidad global	37
Ejercicio resuelto optimización sin restricciones	41
Capítulo 5: optimización con restricciones	45
Con restricciones de igualdad	
Con restricciones de desigualdad	
Fiercicio escritura forma estándar	50

Condiciones de Kuhn-Tucker	51
Ejercicios resueltos condiciones de Kuhn-Tucker	52
Condiciones de mínimo local	59
Condiciones de mínimo global	60
Capítulo 6: programación lineal	61
Ejercicios resueltos preparación programación lineal	64
Método Simplex	69
Ejercicio resuelto soluciones factibles básicas	71
Algoritmo para mejora de solución	80
Ejercicio resuelto mejoramiento de soluciones	82
Reglas para evaluación	85
Tabla Simplex	90
Ejercicio resuelto método Simplex	93
Programación entera	97
Capítulo 7: programación lineal en Excel	99
Herramienta Solver	99
Ejercicios resueltos de PL en Excel	101
Capítulo 8: programación lineal en R	111
Función <i>lp</i>	111
Ejercicios resueltos de PL con R	115
Capítulo 9: programación cuadrática	129
Ejercicio resuelto formulación programación cuadrática	131
Capítulo 10: programación cuadrática en R	133
Función solve.qp	133
Ejercicios resueltos de QP con R	135
Capítulo 11. modelo de Markowitz	141
Portafolio de mínima varianza	144
Utilidad de media varianza	145
Frontera eficiente	146
Ejercicios resueltos estructuración de portafolios	146
Capítulo 12: ejercicios propuestos	175
Capítulo 13: planteamiento de problemas en la industria	181
Capítulo 14: Recursos para optimización	185

Contenido	\/

Capítulo 15: inesperado	187
Capítulo 16: introducción al manejo de Rstudio	197
Capítulo 17: sitios web de interés	203
Bibliografía	205

ÍNDICE DE FIGURAS

Figura 1.	Función Objetivo	1
Figura 2.	Concepto de mínimo local y global	2
Figura 3.	Curvas de nivel para $f(x_1, x_2) = x_1 + 3x_2$	18
Figura 4.	Conjunto factible: $0 \le x_1 \le 2 \text{ y } 0 \le x_2 \le 1 \dots$	19
Figura 5.	Método gráfico	20
Figura 6.	Región factible	22
Figura 7.	Curvas de nivel y región factible	23
Figura 8.	Curvas de nivel y región factible en el óptimo	23
Figura 9.	Convexidad de conjuntos	39
Figura 10.	Concavidad y convexidad de funciones	40
Figura 11.	Restricciones y región factible en R	68
Figura 12.	Restricciones y región factible en Excel	68
Figura 13.	Estructura archivos .csv para soluciones básicas	79
Figura 14.	Diagrama de flujo mejora de solución en método Simplex	81
Figura 15.	Tabla Simplex para una solución básica	92
Figura 16.	Ventana de Solver en Excel	100
Figura 17.	Ventana para configuración de restricciones	101
Figura 18.	Especificación de funciones modelo lineal en Excel	102

Contenido

Figura 19.	Sensibilidad inicial	102
Figura 20.	Configuración de Solver para PL	103
FIGURA 21.	Pantalla final luego de solución	104
FIGURA 22.	Formulación función objetivo y restricciones	105
Figura 23.	Configuración Solver para problema de PL	105
Figura 24.	Factible y restricciones. Problema juegos de sillas	108
Figura 25.	Región factible y curvas de nivel. Problema juegos de sillas	108
Figura 26.	Configuración Solver para problema de PL sillas Fuente	109
Figura 27.	Gráfica de problema de programación cuadrática	140
Figura 28.	Distribución de portafolio para mínima varianza	151
Figura 29.	Distribución de portafolio, máxima utilidad	
	de media varianza	155
Figura 30.	Distribución de portafolio, mínima varianza	159
Figura 31.	Distribución de portafolio, mínima varianza, sin cortos	164
Figura 32.	Distribución de portafolio, rendimiento de referencia	
	y mínima varianza, sin cortos	168
Figura 33.	Frontera eficiente, sin ventas en corto	173
Figura 34.	Proceso de toma de decisiones	182
Figura 35.	Interfaz Rstudio	198
Figura 36.	Selección de directorio de trabajo	199
Figura 37.	Creación nuevo script	199
Figura 38.	Descripción partes de script	200
Figura 39.	Paquetes disponibles e instalación	201

ÍNDICE DE TABLAS

Tabla 1.	Algunas funciones convexas	41
Tabla 2.	Listado de variables que se hacen cero en soluciones básicas	72
Tabla 3.	Todas las soluciones básicas, factibles y no factibles	79
Tabla 4.	Vértices evaluados aplicando algoritmo	
	para mejora de solución	85
Tabla 5.	Regla para terminación del algoritmo	86
Tabla 6.	Ejercicio resuelto tabla Simplex	94
Tabla 7.	De recursos problema de juegos de sillas	107
Tabla 8.	Costo de transporte problema de PL	125
Tabla 9.	Unidades por transportar	128

Sistema de Información en Línea

Al final del libro encontrará el código para ingresar al **Sistema de Información en Línea - SIL** -, por medio del cual podrá acceder a archivos que complementan el contenido de la obra. En ellos, además de los ejemplos resueltos, se incluyen ejercicios complementarios de la situación que se está estudiando.

DEDICATORIA

A Ofelia, Bárbara, Gabriel, Samuel, Samuel y Andrés.

A Marta, Diego, Santiago y David.

A cada palabra por escribir.

A cada lector.

ACERCA DEL AUTOR

Alfredo Trespalacios www.alfredotrespalacios.com alfredo.trespalacios@gmail.com

Consultor y formador en energía, finanzas y riesgos. Doctor en Economía de la Universidad de Salamanca-España, Magíster en Finanzas de la Universidad EAFIT, Ingeniero Electricista de la Universidad Nacional de Colombia. Ha participado en proyectos de formación, consultoría y planeación estratégica para Ruitoque, EMCALI, ISAGEN, EPM y AES Colombia, entre otras empresas. Trabajó durante 9 años en Empresas Públicas de Medellín (EPM) como analista de mercados de electricidad. Es investigador adjunto a la fundación ECSIM y docente en el Instituto Tecnológico Metropolitano (ITM). Ha sido profesor en la Universidad Nacional de Colombia, EAFIT, la Universidad EIA y la Universidad del Norte. Es Investigador Asociado, clasificación Minciencias. Ha dirigido más de 50 trabajos de grado a nivel de posgrado. Es coautor de los libros Análisis de Mercados de Electricidad del fondo Editorial de EAFIT y Retos de la energía en Colombia: Diferentes visiones 2019.

AGRADECIMIENTOS

A los estudiantes del curso de optimización del pregrado en Ingeniería Financiera del Instituto Tecnológico Metropolitano (ITM), durante el semestre 01-2020, quienes acompañaron sus ratos de aislamiento preventivo haciendo lecturas de este documento y recomendando modificaciones, página a página. Quiero hacer mención específica a Karla Roldán y Viviana Avendaño, fue enorme su ayuda para la construcción de este material. Así mismo y luego de unos meses de trabajo conjunto, a los estudiantes que participaron del curso para el periodo 02-2020.

También, a Luis Eduardo Franco, profesor de inteligencia financiera, inversiones y portafolios de renta variable en, entre otras universidades, la Universidad de Medellín y el Instituto Tecnológico Metropolitano (ITM). Su ayuda en la construcción de casos de estudio que aportan a la formación de ingenieros financieros ha sido valiosa.

A usted, que ha iniciado esta lectura, también gracias.

INTRODUCCIÓN

Este esfuerzo académico ha sido pensado para una primera fase, con el fin de acompañar el curso de optimización del pregrado en Ingeniería Financiera del Instituto Tecnológico Metropolitano (ITM), en Medellín-Colombia. De allí que, el centro del contenido se refiere a las aplicaciones de la herramienta en las áreas de administración, economía, finanzas y afines, sobre todo, en la profundización de conceptos matemáticos y demostraciones propias de cursos enfocados en la técnica. Luego de una revisión del material disponible para Iberoamérica, hemos descubierto que la brecha apreciada en la particularidad del ITM es visible para los profesionales en finanzas que están en proceso de formación y desean que su camino por el campo de las matemáticas sea afín a los conceptos, métodos y recomendaciones de tipo financieras, no dirigidos a la ingeniería o la economía, además, entregados en su lengua materna.

Este texto ha sido diseñado a fin de permitir al analista en formación la asimilación de conceptos, mediante la realización de ejercicios guiados y descritos con detalle. Se promueve, tanto el trabajo a papel y lápiz, como el uso de software común y especializado.

Como complemento, el texto cuenta con una sección final en la que el autor presenta el "Lienzo para la formulación de problemas en industria", constituye una propuesta para la resolución de problemas cotidianos en las empresas, a través de técnicas de optimización.