

CONTENIDO

SÍMBOLOS	XVII
Introducción	XIX
Capítulo 1: Teoría del error	1
1.1 Tipos de error	1
1.1.1 Experimental	1
1.1.2 Error de máquina	2
1.1.3 Exactitud	2
1.1.4 Precisión	5
1.2 Ejercicios propuestos	18
Capítulo 2: Series de Taylor	21
2.1 Series de MacLaurin	21
2.2 Series de Taylor	28
2.2.1 Series de Taylor desde el punto de vista numérico	29
2.2.2 Teorema de Taylor (truncamiento)	30
2.2.3 Sumas parciales de las series de Taylor	
2.3 Fiercicios propuestos	40

Capítulo 3: Raíces de funciones	43
3.1 Raíces reales de funciones	46
3.1.1 Bisección	48
3.1.2 Punto fijo	54
3.1.3 Newton-Raphson	56
3.1.4 Newton mejorado	63
3.1.5 Método de la secante	66
3.1.6 Método de regla falsa	70
3.1.7 Comparación de secante y regla falsa	75
3.1.8 Comparación de bisección y regla falsa	77
3.1.9 Bisección-regla falsa alternados	79
3.1.10 Regla falsa-bisección alternados	81
3.1.11 Comparación métodos cerrados	83
3.2 Ejercicios propuestos	85
Capítulo 4: Raíces reales de polinomios	91
4.1 Preliminares sobre polinomios	91
4.1.1 Multiplicidad de las raíces	92
4.1.2 Existencia de las raíces	97
4.2 Sucesiones de Sturm	
4.2.1 Intervalos con una única raíz real diferente	107
4.2.2 Métodos adecuados para hallar raíces de polinomios	112
4.2.3 Multiplicidades de las raíces de las aproximaciones	
encontradas	120
4.3 Deflación polinomial	121
4.4 Algoritmo sugerido para hallar raíces reales de un polinomio	123
4.5 Raíces complejas de polinomios	134
4.5.1 Método de Bairstow	134
4.6 Ejercicios propuestos	144
Capítulo 5: Ajuste de curvas	147
5.1 Método de mínimos cuadrados	147
5.1.1 Regresión lineal	150
5.1.2 Regresión polinomial	151
5.1.3 Regresión múltiple	153
5.1.4 Mínimos cuadrados a un modelo exponencial	154
5.2 Linealización	155
5.2.1 Traslaciones al linealizar	159

5.3 Mínimos cuadrados vs linealiza	ción162
5.4 Interpolación polinomial	164
5.4.1 Diferencias finitas	165
5.4.2 Interpolación de Newton	178
-	184
0 0	dos191
5.4.5 Error en el polinomio inte	erpolante191
5.5 Ejercicios propuestos	192
	CA 197
<u>.</u>	nciones escalonadas200
	200
	204
6.1.3 Riemann	207
1	209
6.2 Aproximación por medio de un	
-	212
-	del trapecio218
6.3 Aproximación por medio de un	1
-	223
-	étodo de Simpson230
-	s (orden superior)232
	odo de Boole233
6.5 Método de integración de Roml	berg240
6.6 Ejercicios propuestos	246
CARÁTINA - DIPERPANCIA CIÁN NUM	épres 240
	ÉRICA 249 ucia adelante252
	lelante252
<u>-</u>	or hacia adelante255 acia atrás256
1	
	rás
_	ior hacia atrás256
<u>-</u>	ntrada257
	a
-	or centrada257
7.4 Ejercicios propuestos	259

Bibliografía	263
RESPUESTAS	265
ÍNDICE ALFABÉTICO	277
ÍNDICE DE GRÁFICAS	
Gráfica 0.1 $\cos x = x$.XX
GRÁFICA 0.2 Distribución normal	.XX
GRÁFICA 2.1 Dominio de la función	25
GRÁFICA 2.2 Aproximaciones con series de Taylor	26
GRÁFICA 3.1 Ejemplo 3.1	
GRÁFICA 3.2 Infinitas raíces	
GRÁFICA 3.3 Intersección de funciones	47
GRÁFICA 3.4 Condiciones del teorema del valor intermedio	48
GRÁFICA 3.5 Condiciones del teorema del valor intermedio	48
GRÁFICA 3.6 Condición del método de bisección	50
GRÁFICA 3.7 Condición del método de bisección	50
GRÁFICA 3.8 Aproximaciones del método de Newton-Raphson	56
GRÁFICA 3.9 Aproximación del método de Newton-Raphson	57
GRÁFICA 3.10 Aproximación del método de la secante	67
GRÁFICA 3.11 Aproximación del método de la secante	68
Gráfica 3.12 Método de regla falsa - primera iteración	70
GRÁFICA 3.13 Condición del método de regla falsa	71
GRÁFICA 3.14 Condición del método de regla falsa	71
Gráfica 3.15 Método de la regla falsa	72
GRÁFICA 3.16 Condición del método de regla falsa	72
GRÁFICA 3.17 Comparación de métodos	75
GRÁFICA 3.18 Comparación de métodos	76
GRÁFICA 3.19 Comparación de métodos	76
GRÁFICA 3.20 Comparación de métodos	79
Gráfica 3.21 Ejercicio 3.5	88
Gráfica 4.1 Multiplicidades de raices	93
Gráfica 4.2 Raices de las funciones	94

GRÁFICA 4.4 Comportamiento de las raíces en un intervalo
GRÁFICA 4.5 Comportamiento de las raíces en un intervalo
GRÁFICA 4.6 Comportamiento de las raíces en un intervalo
GRÁFICA 4.7 Comportamiento de las raíces en un intervalo
GRÁFICA 4.8 Comportamiento de las raíces en un intervalo
GRÁFICA 4.9 Comportamiento de las raíces en un intervalo
GRÁFICA 4.10 Comportamiento de las raíces en un intervalo
GRÁFICA 4.11 Funciones con diferente comportamiento
GRÁFICA 4.12 Comportamiento del intervalo en una sucesión de Sturm 126
GRÁFICA 4.13 Comportamiento del intervalo en una sucesión de Sturm 126
GRÁFICA 4.14 Comportamiento de los intervalos en una
sucesión de Sturm
GRÁFICA 4.15 Comportamiento de los intervalos en una
sucesión de Sturm
GRÁFICA 4.16 Polinomio grado 11
GRÁFICA 4.17 Comandos en Maple del algoritmo de Bairstow
GRÁFICA 4.18 Comandos en Maple del algoritmo de Bairstow
GRÁFICA 4.19 Comandos en Maple del algoritmo de Bairstow
GRÁFICA 4.20 Resultados obtenidos en Maple
Gráfica 4.21 Resultados obtenidos en Maple
Gráfica 4.22 Resultados obtenidos en Maple
GRÁFICA 4.23 Resultados obtenidos en Maple
GRÁFICA 4.24 Resultados obtenidos en Maple
Gráfica 5.1 Modelo de mínimos cuadrados
GRÁFICA 5.2 Salida de Maple en la evaluación de mínimos cuadrados 155
GRÁFICA 5.3 Ejemplo de linealización
GRÁFICA 5.4 Linealización vs mínimos cuadrados
GRÁFICA 5.5 Primeras diferencias
GRÁFICA 5.6 Función discontinua
GRÁFICA 5.7 Primer polinomio de aproximación de Lagrange184
GRÁFICA 5.8 Segundo polinomio de aproximación de Lagrange
GRÁFICA 5.9 Tercer polinomio de aproximación de Lagrange
GRÁFICA 5.10 Cuarto polinomio de aproximación Lagrange
GRÁFICA 5.11 Primer polinomio de aproximación Lagrange
GRÁFICA 5.12 Tercer polinomio de aproximación Lagrange

GRÁFICA 5.13 Polinomio de interpolación de Lagrande	189
Gráfica 6.1 Área bajo la curva	198
Gráfica 6.2 Área bajo la curva	199
GRÁFICA 6.3 Aproximación del área por sumas superiores de Riemann	201
GRÁFICA 6.4 Aproximación del área por sumas superiores de Riemann	. 202
GRÁFICA 6.5 Salida de Maple de sumas superiores de Riemann	203
GRÁFICA 6.6 Aproximación del área por sumas inferiores de Riemann	. 204
GRÁFICA 6.7 Aproximación del área por sumas inferiores de Riemann	205
GRÁFICA 6.8 Salida de Maple de sumas superiores de Riemann	. 206
GRÁFICA 6.9 Aproximación del área por sumas de punto medio de Riemann	. 209
GRÁFICA 6.10 Aproximación del área por sumas de punto medio de Rieman	n210
GRÁFICA 6.11 Salida de Maple de la aproximación por punto medio de Riemania	n211
GRÁFICA 6.12 Aproximación por método del trapecio	213
GRÁFICA 6.13 Salida de Maple de la aproximación del área por trapecio	216
GRÁFICA 6.14 Salida de Maple de la aproximación del área por trapecio	217
GRÁFICA 6.15 Error del trapecio	. 218
GRÁFICA 6.16 Error del trapecio	220
GRÁFICA 6.17 Salida de Maple de la aproximación del área por trapecio	222
GRÁFICA 6.18 Aproximación de Simpson (1/3)	223
GRÁFICA 6.19 Aproximación de Simpson (1/3)	. 224
Gráfica 6.20 Aproximación de Simpson (1/3)	225
Gráfica 6.21 Aproximación de Simpson (1/3)	226
GRÁFICA 6.22 Aproximación área bajo la curva con Simpson (1/3)	226
GRÁFICA 6.23 Salida de Maple para la aproximación de Simpson (1/3)	228
GRÁFICO 6.24 Salida Maple de aproximación Simpson (1/3)	229
GRÁFICA 6.25 Salida Maple de aproximación Simpson (1/3)	232
Gráfica 6.26 Aproximación del método de Boole	234
GRÁFICA 6.27 Aproximación área bajo la curva con el método de Boole	235
GRÁFICA 6.28 Salida de Maple de la aproximación con el método de Boole.	236
GRÁFICA 6.29 Salida Maple de aproximación ejercicio 6.11	237
Gráfica 6.30 Salida Maple ejercicio 6.12	. 239
GRÁFICO 6.31 Aproximación área bajo la curva con Romberg	. 241
GRÁFICA 6.32 Aproximación área bajo la curva con Romberg	. 242
Gráfica 6.33 Salida de Maple ejercicio 6.7	. 245
GRÁFICA 7 1 Diferenciación hacia adelante	249

Gráfica 7.2. Diferenciación hacia atrás	250
Gráfica 7.3. Diferenciación centradada	251
GRÁFICA 7.4. Dominio aproximación primera derivada	254
ÍNDICE DE TABLAS	
INDICE DE TABLAS	
Tabla 1.1 Sucesión ejemplo 1.5	6
Tabla 1.2 Distancia entre dos elementos de la sucesión	
Tabla 1.3 Ejemplo 1.6	8
Tabla 1.4 Ejemplo 1.7	9
Tabla 1.5 Ejemplo 1.9	15
Tabla 1.6 Ejemplo 1.10	17
Tabla 1.7 Ejemplo 1.11	18
Tabla 2.1 Valores de la sucesión	24
Tabla 2.2 Valores de la sucesión	24
Tabla 2.3 Cálculo del factorial	32
Tabla 2.4 Cálculo de la serie	33
Tabla 2.5 Cálculo de la serie	36
Tabla 2.6 Evaluación del término	38
Tabla 2.7 Ejemplo 2.6	39
Tabla 3.1 Intervalos del método de bisección	50
Tabla 3.2 Ejemplo 3.3	53
Tabla 3.3 Ejemplo 3.4	53
Tabla 3.4 Ejemplo 3.5	55
Tabla 3.5 Aproximación del método de Newton-Raphson	59
Tabla 3.6 Aproximación del método de Newton-Raphson	59
Tabla 3.7 Aproximación del método de Newton-Raphson	60
Tabla 3.8 Aproximación del método de Newton-Raphson	61
Tabla 3.9 Ejemplo 3.9	65
Tabla 3.10 Método de Newton-Raphson	
Tabla 3.11 Método de Newton mejorado	66
Tabla 3.12 Ejemplo 3.11	
Tabla 3.13 Desarrollo del método de regla falsa	
Tabla 3.14 Ejemplo 3.12	
Tabla 3.15 Comparación de métodos	

1ABLA 3.16 Comparación de metodos/8
Tabla 3.17 Ejemplo 3.14
Tabla 3.18 Ejemplo 3.15
Tabla 3.19 Ejemplo 3.16
Tabla 3.20 Ejemplo 3.17
Tabla 3.21 Comparación métodos
Tabla 3.22 Comparación métodos
Tabla 4.1 Raíces de la función
Tabla 4.2 Comportamientos de las raices en la derivada de la función 95
Tabla 4.3 Comportamiento de una raíz en las derivadas de la función 96
Tabla 4.4 Raíces de la función
Tabla 4.5 Comportamientos de las raices en la derivada de la función 96
Tabla 4.6 Comportamiento de una raíz en la segunda derivada
de la función97
Tabla 4.7 Tabla de multiplicidades
Tabla 4.8 Posibles intervalos de Sturm
Tabla 4.9 Intervalos iniciales de Sturm
Tabla 4.10 Polinomios de la sucesión de Sturm
Tabla 4.11 Intervalos iniciales de Sturm
Tabla 4.12 Comportamiento de las raíces en un intervalo
Tabla 4.13 Comportamiento de las funciones de Sturm en un intervalo 109
Tabla 4.14 Comportamiento de las funciones de Sturm en un intervalo 110
Tabla 4.15 Comportamiento de las funciones de Sturm en un intervalo 111
Tabla 4.16 Comportamiento de las funciones de Sturm en un intervalo 112
Tabla 4.17 Comportamiento de las funciones de Sturm en un intervalo 115
Tabla 4.18 Resultados al aplicar bisección-regla falsa
Tabla 4.19 Resultados al aplicar bisección-regla falsa
Tabla 4.20 Resultados al aplicar bisección-regla falsa
Tabla 4.21 Comportamiento de las funciones de Sturm en un intervalo 118
Tabla 4.22 Resultados al aplicar Newton-Raphson
Tabla 4.23 Resultados al aplicar bisección-regla falsa
Tabla 4.24 Evaluación de las multiplicidades
Tabla 4.25 Tabla de sucesión de Sturm
Tabla 4.26 Evaluación de los extremos de los intervalos en una
Sucesión de Sturm

Tabla 4.27 Evaluación de los extremos de los intervalos en una	
Sucesión de Sturm	126
Tabla 4.28 Evaluación de los extremos de los intervalos en una	
Sucesión de Sturm	127
Tabla 4.29 Evaluación de los extremos de los intervalos en una	
Sucesión de Sturm	128
Tabla 4.30 Resultados al aplicar bisección-regla falsa	129
Tabla 4.31 Resultados al aplicar bisección-regla falsa	130
Tabla 4.32 Resultados al aplicar bisección-regla falsa	130
Tabla 4.33 Resultados al aplicar Newton mejorado	131
Tabla 4.34 Evaluación de las multiplicidades	132
Tabla 4.35 Aplicación del algoritmo de Bairstow	138
Tabla 4.36 Aplicación del algoritmo de Bairstow	139
Tabla 4.37 Obtención del error normalizado	
Tabla 4.38 Obtención del error normalizado	142
Tabla 5.1 Algunos tipos de linealización	158
Tabla 5.2 Primeras diferencias finitas hacia adelante	167
Tabla 5.3 Cálculo primeras diferencias finitas hacia adelante	167
Tabla 5.4 Cálculo primeras diferencias finitas hacia adelante	168
Tabla 5.5 Primeras diferencias finitas hacia adelante	
Tabla 5.6 Segundas diferencias finitas hacia adelante	172
Tabla 5.7 N-ésimas diferencias finitas hacia adelante	172
Tabla 5.8 Evaluación de las quintas diferencias finitas hacia adelante	
Tabla 5.9 Evaluación de las octavas diferencias finitas hacia adelante	173
Tabla 5.10 Tabla perfecta de diferencias hacia delante de grado m	174
Tabla 5.11 N-ésimas diferencias finitas hacia atrás	175
Tabla 5.12 Evaluación de las octavas diferencias finitas hacia atrás	175
Tabla 5.13 Evaluación de las terceras diferencias finitas hacia adelante	176
Tabla 5.14 Evaluación de las terceras diferencias finitas hacia atrás	176
Tabla 5.15 Dominio de las diferencias finitas centradas	177
Tabla 5.16 Evaluación de las segundas diferencias finitas centradas	178
Tabla 5.17 Puntos iniciales	179
Tabla 5.18 Primera diferencia finita dividida hacia adelante	179
Tabla 5.19 Puntos iniciales	179
TARIA 5 20 Primeras diferencias finitas divididas hacia adelante	180

Tabla 5.21 Segundas diferencias finitas divididas hacia adelante	180
Tabla 5.22 Segundas diferencias finitas divididas hacia adelante	180
Tabla 5.23 Primeras diferencias finitas hacia adelante	181
Tabla 5.24 Cuartas diferencias finitas hacia adelante	182
Tabla 5.25 Terceras diferencias finitas hacia adelante	182
Tabla 5.26 Terceras diferencias finitas hacia adelante	183
Tabla 5.27 Cuartas diferencias finitas divididas	192
Tabla 5.28 Datos del ejercicio 5.2	192
Tabla 5.29 Datos del ejercicio 5.4	193
Tabla 5.30 Datos del ejercicio 5.11	194
Tabla 6.1 Aproximación del área por sumas superiores de Riemann	204
Tabla 6.2 Aproximación del área por sumas inferiores de Rieman	207
Tabla 6.3 Aproximación del área por sumas de Riemann	208
Tabla 6.4 Aproximación por punto medio de Riemann	211
Tabla 6.5 Aproximación del área por trapecio	217
Tabla 6.6 Aproximación ejercicio 6.8	229
Tabla 6.7 Métodos de aproximación y sus errores	233
Tabla 6.8 Aproximación ejercicio 6.11	237
Tabla 6.9 Aproximación ejercicio 6.13	244
Tabla 6.10 Aproximación ejercicio 6.13 con Romberg	
Tabla 7.1 Aproximación primera derivada	254

SÍMBOLOS

 ε_a Error absoluto.

 ε_r Error relativo.

 $\varepsilon_{r\%}$ Error relativo porcentual.

 $\{x_n\}$ Sucesión.

EN Error normalizado.

ENn Término -ésimo del error normalizado.

ENP Error normalizado porcentual.

Tm Tolerancia con m cifras significativas.

 s_n Suma parcial de una serie.

 $R_n(\xi)$ Error *n*-ésimo evaluado en ξ .

bi Aproximación i-ésima aplicando el método de bisección.

rfi Aproximación i-ésima aplicando el método de regla falsa.

 $a_n x^n$ Término n-ésimo de un polinomio.

 (ρ, ρ) Intervalo donde se encuentran las raíces de un polinomio.

Vp (c) Número de cambios de signo del valor c, evaluado en las sucesiones de Sturm.

 $O(h^n)$

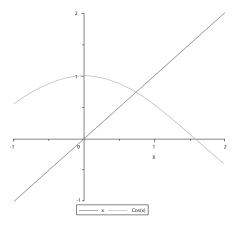
 $\frac{\overrightarrow{df}}{dx}(x_k)$

adelante.

Ιi Intervalo donde se garantiza una única raíz. β_i Parámetros de los modelos de regresión. Error *i*-ésimo generado por un modelo de regresión. ei $\overrightarrow{\Delta} f$ Primera diferencia finita hacia adelante. $\operatorname{\textbf{\textit{Dom}}}_X(f)$ Valores que puede tomar la función f en un conjunto de valores X. $\vec{\Delta}^n f n$ -ésima diferencia finita hacia adelante. $\prod_{i=1}^n x_i$ Productoria de los *n* primeros términos. R_i^s Aproximación-ésima del valor de la integral utilizando sumas superiores de Riemman. R_i^I Aproximación-ésima del valor de la integral utilizando sumas inferiores de Riemman. A_i^T Aproximación-ésima del valor de la integral utilizando el método del trapecio. M_T Cota superior para acotar el error utilizando trapecios. E_n^T Iteración -ésima del error del método del trapecio. A_i^s Aproximación-ésima del valor de la integral utilizando el método de Simpson. A_i^B Aproximación-ésima del valor de la integral utilizando el método de Boole. $R_{k,i}$ Fórmula de recurrencia de aproximación de Romberg de la fila i, columna j.

Error -ésimo generado al utilizar un método de aproximación.

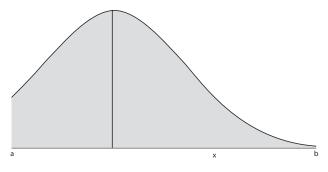
Aproximación de la derivada en x_{ν} , utilizando diferencias hacia


INTRODUCCIÓN

Debemos aclarar que las presentes notas son producto de los cursos de métodos numéricos dictados durante varios años y no pretende ser un libro formal de métodos numéricos, más bien, sirve como complemento a libros conocidos. Por ello, se tratará de dar un enfoque un poco diferente en un lenguaje más cotidiano.

La matemática actual cuenta con diferentes teorías y métodos para hallar soluciones a diversos problemas y, además, con un lenguaje propio que permite expresar diferentes conceptos de manera concisa y precisa, sin embargo, este lenguaje muchas veces resulta insuficiente para ciertos propósitos o los métodos actuales no solucionan completamente los problemas que se puedan presentar, mostremos primero dos hechos que ilustran estas afirmaciones.

En primer lugar, uno de los problemas más frecuentes en matemáticas es encontrar soluciones reales a ecuaciones, sin embargo existen ecuaciones que, a pesar de ser muy sencillas de escribir en el lenguaje matemático como x-cos(x)=0, no se pueden resolver analíticamente (con las técnicas convencionales), aunque gráficamente se ve que en efecto tienen solución (ya que es la intersección de las gráficas de x y cos(x)).


Gráfica $0.1\cos x = x$

Fuente: elaboración propia

En un segundo ejemplo, para calcular valores de integrales definidas usamos el teorema fundamental del cálculo (TFC), el cual nos permite relacionar las antiderivadas de la función con el valor de la integral, sin embargo, hay situaciones en las cuales estas antiderivadas no se pueden expresar como combinación de funciones elementales (las comúnmente conocidas); uno de estos casos se presenta al buscar la probabilidad de una variable aleatoria que tenga una distribución normal, ya que para esto nos vemos enfrentados a calcular la integral definida $\int_a^b e^{-x^2} dx$ y, por tanto, se necesita una antiderivada de la función e^{-x^2} , la cual no puede ser expresada por medio de funciones polinómicas, radicales, exponenciales, logarítmicas ni una combinación de ellas mediante el álgebra de funciones. Aunque el problema claramente tiene solución, dado que es el área bajo la curva de una función continua sobre un intervalo acotado (Apostol, 1996), lo cual gráficamente es

Gráfica 0.2 Distribución normal

Fuente: elaboración propia.

Introducción XXI

El objetivo de estas notas es describir brevemente algunos métodos numéricos (y en algunos casos ver qué motivó a desarrollarlos), es decir, buscar soluciones aproximadas de problemas que no pueden ser resueltos con los métodos analíticos conocidos (ya que si fuera esto posible no tendríamos la necesidad de crear una aproximación de la solución), por lo tanto no buscamos las soluciones exactas de dichos problemas (es imposible), pero tratamos de dar aproximaciones bastante "buenas" de estas. Y aquí, ya nos enfrentamos al primer problema o característica de los métodos numéricos: **nunca solucionaremos un problema de manera exacta**, solo estamos dando aproximaciones, tratando de controlar o medir el margen de error que aparece en la ejecución de los procesos utilizados.

Por las razones antes mencionadas, empezamos nuestro primer capítulo con un estudio breve de la teoría del error y damos una definición alterna de tolerancia, la cual puede ser usada al aprovechar la potencia de las máquinas actuales que nos permiten trabajar con bastantes cifras significativas, lo cual da un criterio para verificar si los métodos numéricos recursivos (es decir, que usan un algoritmo recursivo) son lo suficientemente "buenos" para ser tenidos en cuenta e implementarlos. El segundo capítulo está dedicado a un repaso de las series y al teorema de Taylor desde el punto de vista numérico, el cual es parte fundamental del desarrollo de la mayoría de los métodos numéricos.

En el tercer capítulo, discutimos uno de los problemas más comunes en matemáticas, como lo es la resolución de ecuaciones reales, tal y como fue mostrado en el primer ejemplo de esta introducción.

En el cuarto capítulo, dado que las funciones más naturales para nosotros son los polinomios, dedicamos la última parte de este capítulo a encontrar las raíces de ecuaciones polinómicas y damos un algoritmo completo para aproximar las raíces reales de estas ecuaciones, el cual no se encuentra completo en la bibliografía actual (como parte opcional se aproximarán las raíces complejas).

Para el quinto capítulo, estudiamos el ajuste de curvas (funciones), empezamos por el método de mínimos cuadrados y lo estudiamos teóricamente como un problema de minimización de la norma del vector error, para después comparar explícitamente el método teórico a funciones no polinomiales con las regresiones lineales aplicadas a linealizaciones de los modelos y mostrar sus diferencias. En segundo lugar, se muestra la forma de construir un polinomio de interpolación de manera sencilla y natural, haciendo uso únicamente del teorema del factor.

En el capítulo sexto, nos dedicamos al cálculo en una variable al comenzar por la integración (orden histórico) y centrándonos en los métodos y errores de los métodos de Newton-Cotes, los cuales son simplemente aplicación de la interpolación polinomial.

En el capítulo séptimo usaremos el teorema de Taylor para llegar a aproximaciones de la derivada (al mostrar explícitamente el desarrollo de estas fórmulas) y las escribiremos de manera simplificada, al hacer uso de las diferencias finitas divididas; especificando su error O(h).

MÉTODOS NUMÉRICOS

Existen problemas matemáticos que no pueden ser resueltos por los métodos analíticos conocidos. Por ello los autores se propusieron buscar métodos para hallar soluciones aproximadas, tratando de controlar el margen de error que aparece en la ejecución de los procesos utilizados.

El libro inicia con la teoría del error, basada en las sucesiones; continúa con la definición de las series de Taylor; la resolución de ecuaciones reales; muestra un algoritmo completo para hallar las raíces reales de un polinomio; se estudia el ajuste de curvas, empezando por el método de mínimos cuadrados hasta la interpolación; luego estudia la integración, centrada en los métodos Newton-Cotes y sus errores; finalmente, se utiliza el teorema de Taylor para la aproximación de la derivada.

El libro va dirigido a estudiantes de pregrado y posgrado de todas las ingenierías y ciencias básicas.

Colección: Ingeniería y salud en el trabajo

Área: Ingeniería

Incluye

- ▶ Definición alterna de "tolerancia".
- ► Algoritmo nuevo, bisección-regla falsa alternada, para hallar raíces de funciones.
- ➤ Algoritmo completo para aproximar las raíces reales de los polinomios.
- ► Herramienta de comparación entre mínimos cuadrados y linealización.

Solón Efrén Losada

Licenciado en Matemáticas, Magister en Economía, especialista en Multimedia educativa. Integrante del grupo de investigación MATRIX (U. Militar Nueva Granada).

Docente Universidad Militar Nueva Granada y Universidad Antonio Nariño, autor de los artículos *Una caracterización de la equivalencia-fila de matrices de tamaño 2 x 3, Cálculo de series armónicas de Riemann con exponente par*, entre otros.

Jorge Morales

Matemático, Magister en Ciencias Matemáticas y Doctorando en Ciencias Matemáticas. Docente de las universidades Militar Nueva Granada, Distrital Francisco José de Caldas y Nacional de Colombia. Autor de los artículos Cálculo de series armónicas de Riemann con exponente par, Una caracterización de la equivalencia-fila de matrices de tamaño 2 x 3.

Carlos Fabián Ruiz

Economista, Magister en Economía y Candidato a Magister en Investigación operativa y Estadística. Docente de la universidad Militar Nueva Granada y consultor privado en investigación de mercados.

