Riesgos Físicos III: Temperaturas extremas y ventilación

Fernando Henao Robledo

Ingeniero mecánico de la Universidad Tecnológica de Pereira, 1971; ingeniero de salud ocupacional del ISS, Caldas 1972-2002; especialista en salud ocupacional de la Universidad de Antioquia, 1999; profesional en Salud Ocupacional de la Universidad del Quindío, 1999.

Elaboración de las siguientes normas técnicas: Calderas, Seguridad Hospitalaria, Sierras Circulares para madera y Planeadoras.

Autor de: Límites máximos permisibles; Codificación en salud ocupacional; Estadística aplicada a la salud ocupacional; Riesgos Físicos I, ruido, vibraciones y presiones anormales; Riesgos Físicos II, iluminación; Riesgos eléctricos y mecánicos; Riesgos químicos; Riesgos en la construcción

Riesgos: Temperaturas extremas y ventilación

Fernando Henao Robledo

Contenido

Presentación	XI
Primera Parte	
Temperaturas extremas	1
Calor	3
Frío	
Fisiología	5
Sistema aislante del organismo	8
Equilibrio entre la producción y la pérdida de calor	8
Mecanismo para reducir la temperatura corporal	10
Glosario de términos	11
Calor	13
Conducción	13
Convección	15
Radiación	16
Evaporación	17
Carga térmica	18
Confort térmico	19
Temperatura del aire	20
Velocidad de movimiento del aire	20
Contenido de humedad del aire	21
Temperatura radiante de sólidos vecinos	22
Unidades de calor	23
Perturbaciones debidas al calor	24
Tensión térmica	24
Golpe de calor	25
Síncope por calor (colapso debido al calor)	25
Postración anhidrótica por el calor (deshidratación)	25
Postración de calor con depleción de sal	26
Calambres por el calor	
Enfermedades de las glándulas sudoríparas	26
Fatiga transitoria por el calor	26
Edema por calor	26
Otros efectos del calor	26

Medición de factores ambientales	27
Temperatura del aire	
Humedad del aire	28
Velocidad de movimiento del aire	28
Calor radiante	28
Termómetro de bulbo húmedo para "condiciones naturales"	30
Requisitos y procedimientos	31
Tipos y características de los equipos	
Medidor de temperaturas	
Medidor de humedad	
Medidor de velocidad del aire	
Medidor de calor radiante	33
Medidor de estrés térmico	33
Índice de temperatura de globo y bulbo húmedo (TGBH)	37
Índice de Tensión Térmica (ITT)	38
Cálculo de evaporación máxima	
Índice de temperatura efectiva (T efectiva)	
Determinación del calor metabólico	
Estimación del consumo metabólico a través de tablas	44
Consumo metabólico según el tipo de actividad	44
Niveles de referencia – Valores límites permisibles	40
Análisis de resultados	47
Índice de Temperatura de Globo y Bulbo Húmedo	
Índice de Tensión Térmica, ITT	
Ambientes fríos	49
Hipotermia	49
Sensación térmica	50
Controles	53
Medidas de control	55
Controles de ingeniería	55
Sistemas de ventilación general	
Sistemas de enfriamiento y/o tratamiento del aire	
Intercambiadores de calor	55
Equipos de aire acondicionado	55
Aumentar la velocidad de flujo del aire en el sitio de trabajo	50
Encerramiento de fuentes de calor y superficies calientes	50
Barreras de material aislante reflectivo y/o absortivo	
Actuación sobre la fuente	
Protección contra los aportes externos de calor	
Tabiques opacos	
Tabiques de vidrio	
Protección contra las fuentes de calor interiores	
Fuentes de calor convectivas	50

Fuentes de calor radiante	59
Actuación sobre el medio	
Sistemas de ventilación general	
Sistemas de enfriamiento y/o tratamiento del aire	60
Intercambiadores de calor	61
Equipos de aire acondicionado	61
Aumentar la velocidad de flujo de aire en el sitio de trabajo	61
Actuación sobre el individuo	62
Reducción de la producción de calor metabólico	62
Limitación de la duración de la exposición	62
Creación de un microclima en el puesto de trabajo	63
Aclimatación	63
Hidratación	64
Control médico	65
Programas de monitoreo de los trabajadores	65
Protección personal	66
Características térmicas de los vestidos de protección	67
Inflamabilidad de los vestidos	68
A. Características cuantitativas	
B. Características cualitativas	68
Dispositivos para impedir la penetración de calor ambiental	
1- Reflexión del calor radiante	
2- Disminución de la conductividad térmica a través del vestido	69
3- Eliminación del calor recibido por la superficie del vestido	
mediante la evaporación del agua	
Vestidos interiores ventilados	70
Vestuario con circulación de líquido	
Controles administrativos y prácticas de trabajo	
Objetivos del diseño	
Aislamientos térmicos	
Principales materiales de aislamiento	
Silicato de calcio	
Vidrio celular	
Fibra de vidrio	
Fibras minerales y lana de roca	
Sílice y perlita expandida	
Plásticos elastómeros	
Espumas plásticas	
Fibras refractarias	
Cementos aislantes	
Formatos para ser utilizados	
Visita de reconocimiento	75

Evaluación de estrés térmico	78
Segunda Parte	
Ventilación industrial	79
Introducción	79
El aire atmosférico	80
Ventilación	80
Clasificación de los métodos	82
de ventilación	82
Ventilación general o por dilución	82
Clasificación	86
Extracción localizada	89
Clasificación	89
Campana, capota o sistema de captación	90
Conductos (ductos) de aire con sus accesorios (codos, entradas, uniones)	98
Separadores, filtros o purificadores de aire	102
Concentración y tamaño de las partículas del contaminante	104
Grado y nivel de captación requerido	104
Características del aire o corriente de gas	105
Características del contaminante	105
Requerimientos de energía	105
Métodos de eliminación de desechos	105
Cámara de sedimentación	105
Ciclones	106
Filtros de tela (talegas)	107
Torres lavadoras (Scrubbers)	108
Precipitador electrostático	110
Ventilador y motor	111
Ventiladores de hélice	111
Tipos especiales de ventiladores	115
Extractores, ventiladores de techo	116
Combinación de ventilador y colector de polvo	117
Eyectores de aire	117
Selección de ventiladores	118
Entradas de aire	118
Comprobación de la eficiencia de un sistema	119
Bibliografía	121
Consultas electrónicas	123

Actualización normativa en el sistema SIL

- Reglamento Técnico Colombiano para evaluación y control de sobrecarga térmica en los centros y puestos de trabajo
- Resolución 2400 de 1979
- NTP 323: Determinación del metabolismo energético
- ISO 7243: Valoración del riesgo de estrés térmico: índice WBGT

Presentación

La American Industrial Higienist Association, AIHA, define a la higiene industrial como: "La ciencia y el arte dedicada al reconocimiento, evaluación y control de aquellos factores ambientales originados en o por el lugar de trabajo, que pueden ocasionar enfermedades, menoscabo de la salud y bienestar o importante malestar e ineficiencia entre los trabajadores o entre los ciudadanos de una comunidad".

Además, en el Artículo 9° del Decreto 614 de 1984, del Ministerio de la Protección Social se define como: "El conjunto de actividades destinadas a la identificación, evaluación y al control de los agentes y factores del ambiente de trabajo que pueden afectar la salud de los trabajadores".

Uno de los capítulos de esta ciencia es sobre los factores de riesgo que en la "Guía técnica para el análisis de exposición a factores de riesgo ocupacionales para el proceso de evaluación en la calificación de origen de enfermedad", elaborada por el Ministerio de la Protección Social, plantea que los factores de riesgo se clasifican desde el punto de vista del origen y no del efecto, definiendo a los factores de riesgo físico como: "Los factores ambientales de naturaleza física, considerando a esta como la energía que se desplaza en el medio, que cuando entren en contacto con las personas pueden tener efectos nocivos sobre la salud dependiendo de su intensidad, exposición y concentración de los mismos". También se pueden definir como, cualquier forma de energía presente en el medio ambiente de trabajo que puede lesionar al trabajador expuesto.

Con esta obra se pretende presentar, las bases teóricas para que las personas se motiven en el estudio del tema de temperaturas extremas, ventilación industrial con sus riesgos asociados y posteriormente, poder dedicarse a realizar estudios más profundos con el fin de poder diseñar sistemas de control, tanto en la fuente como en el medio, y como última instancia en el receptor. No es el objetivo escribir un manual que recopile todo lo escrito y estudiado sobre tan complejos temas.

Se plantean las definiciones básicas, clasificación, fuentes generadoras, los problemas de salud generada por exposición al riesgo, instrumentos de medición, los límites máximos permisibles establecidos en Colombia y los métodos de control, comúnmente utilizados para atenuarlos en los ambientes de trabajo.

Toda la legislación colombiana nombrada en el presente documento puede ser consultada en Sistema de Información en Línea, SIL, de Ecoe Ediciones.

Temperaturas extremas

Dentro de la clasificación general de factores de riesgo físico, aparece el riesgo de temperaturas extremas que afecta a gran cantidad de trabajadores, y a pesar de existir el "Reglamento técnico colombiano para evaluación y control de sobrecarga térmica en los centros y puestos de trabajo", la gran mayoría de las empresa y trabajadores lo desconocen; y por lo tanto, no se aplican controles efectivos con el fin de eliminar el riesgo y cuando esto no es posible, se hace muy poco por minimizar sus efectos sobre la población trabajadora y no se cuantifican las pérdidas ocasionadas. En esta edición se presenta la fundamentación teórica para poder enfrentar el riesgo de manera técnica y concreta, con los elementos básicos para su control. Además, se presenta la teoría básica para comprender el tema de ventilación industrial sin pretender crear un manual técnico sobre el tema, debiéndose comprender que la ventilación como tal, no es un riesgo sino un sistema para el control de riesgo de ambiente térmico y el mejor sistema actual, para el control del factor de riesgo químico.

Según lo planteado en el documento "Evaluación de la sobrecarga térmica en el ambiente de trabajo" por parte de la Organización Mundial de la Salud, contrariamente a lo que ocurre con otros agentes ambientales, el calor no actúa en forma específica sobre algún tejido o función determinada de la persona expuesta sino que actúa en forma compleja, sus variaciones afectan la fisiología total del organismo.

El hombre como ser homeotermo posee los mecanismos compensatorios adecuados para mantener una constancia relativa de la temperatura interna, aún cuando varíen las condiciones climáticas exteriores que podrían potencialmente modificarla. El hombre es un animal de temperatura constante; ello implica que

Otros títulos de su interés:

Seguridad y salud en el trabajo Conceptos básicos *Fernando Henao Robledo*

> Riesgos en la construcción Fernando Henao Robledo

Riesgos eléctricos y mecánicos Fernando Henao Robledo

> Lesiones profesionales e inspecciones de control Fernando Henao Robledo

Planes de contingencia Raúl Felipe Trujillo

Salud ocupacional Francisco Álvarez Heredia

> Seguridad industrial Andrés Giraldo

Riesgos: Temperaturas extremas y ventilación

El hombre es un animal de temperatura constante; ello implica que la biología humana no tolera variaciones apreciables de temperatura de ciertos órganos críticos, siendo por lo tanto de gran interés estudiar las relaciones entre el hombre y las características térmicas del ambiente, las cuales podrían modificar la temperatura de los órganos y poner en peligro la vida e integridad física de la persona expuesta.

El mantener constante la temperatura interna del cuerpo es de vital importancia para el hombre, el cual ha desarrollado potentes medios de regulación que le permiten mantener bajo control dicha temperatura, aún en condiciones muy desfavorables.

Respecto a la ventilación industrial, esta no solo sirve para controlar la temperatura ambiental sino que es el mejor sistema de control de las sustancias químicas.

Colección: Ingeniería y salud en el trabajo Área: Seguridad y salud en el trabajo

